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LP Formulation

Consider a general LP problem:
min
x

c⊤x

s. t. Ax = b,

x ≥ 0

(1)

which is a powerful framework for describing and solving optimization problems.

The set of applications of linear programming is literally too long to list;

Everything from production scheduling to web advertising optimization to clothing
manufacturing;

LP touches nearly every commercial industry in some way.



Classic Algorithm: Simplex Methods

The first algorithm solving LP, proposed by George Dantzig in 1947;

Lead to an exact(vertex) solution each iteration;

Exponential convergence rate, which makes it struggling when solving super
large-scale problems.

Figure: Geometric diagram of Simplex Method: find an exact(vertex) solution x∗ with
potentially exponentially many moves.



Classic Algorithm: Interior-Point Methods

polynomial-time complexity;

Faster than simplex for solving LP problems from scratch;

Reach to an interior-point solution, unless the problem has a unique optimal so-
lution.

Figure: Geometric diagram of interior-point methods: quickly find a solution in the relative
interior of the optimal face.



Prevalent First-Order Methods

Traditional interior point method struggles for many huge scale LP problems due
to high per iteration cost;
Many successful first-order algorithms, such as

• an ADMM based Interior Point Method (ABIP) (Lin, Ma, et al. 2020),
• a primal-dual majorization-minimization method (Liu, Dai, and Huang 2022), etc.

Strong methods for LP with special structure, especially network flow structure,
e.g.

• optimal transport (Cuturi 2013; Lin, Ho, and Jordan 2019),
• Wasserstein barycenter (Benamou et al. 2015; Ge et al. 2019).

Low accurate solutions and lack of dual information.
(Thus the LP and mixer integer programming (MIP) solvers still cannot benefit
from these emerging first-order methods.)



Significance for Basic(Vertex/Corner) Solutions

Interior-point methods → solutions in the interior of optimal face
First-order method → approximated sub-optimal solutions

There are many cases that a(n) basic (exact/vertex) solution could be more valuable
than an interior-point (approximated) solution:

More accurate than an interior-point solution,

a basic solution can be used to warm-start the simplex algorithm in case of
reoptimization,

More sparse, i.e. more variables are fixed to zero. Particularly appealing when
solving continuous relaxations of mixed integer problems.



Crossover

? How could we benefit from the speed of interior-point methods or first-order
methods, and also obtain high-quality basic (vertex) solutions?

A crossover algorithm is a bridge from inner points to corner points.

Figure: Crossover algorithm — a ”jump” from an interior-point solution to a vertex solution



Crossover Methods — Diagrams

(a) Basis Identification
(Primal/Dual Push)

(b) Reoptimization
(Clean-up)

Figure: Crossover algorithm’s process diagram



Crossover Research Review

There are few papers about crossover research. It is an undisclosed technology
developed by commercial solvers respectively.

Previous research such as Megiddo (1991), Mehrotra and Ye (1993), Andersen
and Ye (1996), and Andersen (1999), only consider crossover from an optimal
primal-dual pair, which is not attainable by first-order methods;

One reason is that crossover algorithms are hard to do theoretical convergence
analysis. Since the crossover phase starts from an interior-point solution which we
have no prior information. It is almost impossible to prove the convergence or show
the convergence rate of a crossover algorithm.



Practical Results

For current crossover algorithms, quite often the crossover computation time is signifi-
cantly longer than the interior-point method computation time. We list some of these
problems.

Large-scale optimal transport problems and minimal cost flow problems could be
solved faster by the barrier algorithm than the simplex method. But their crossover
time is quite long and affect the solving efficiency;

Benchmark of barrier LP solvers. Many problems here have long crossover time.
Some typical problems like datt256 and graph40-40. The crossover run-time is
hundreds of times over the barrier run-time.

http://plato.asu.edu/ftp/lpbar.html
http://plato.asu.edu/ftp/lp_logs/gur_results/datt256_lp.gub
http://plato.asu.edu/ftp/lp_logs/gur_results/graph40-40_lp.gub


Our Contributions

For large scale LP with network structure, we propose
• a criterion to evaluate the possibility of each variable being in the optimal basis, and a column

generation based basis identification phase;
• a spanning tree structure based basis identification method based on the spanning tree characteristics

of basic solutions.
• Speed-up crossover over commercial solvers and create fast algorithm combining with first-order

methods, such as Sinkhorn algorithm.

For general LP problems, we develope
• a perturbation crossover to alleviate difficulties when the LP has a large optimal face;
• This powerful technique has been used on the rapid-growing commercial optimizer Copt, leading to

a breakthrough from its version 1.5 to 1.6.
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The Tree Based Crossover Method



High-level Idea of Evaluating Potential Basic Variables

Figure: A flow f in G at node i, from the given interior-point solution f .

Measure the importance of each arc in a flow:

flow on this arc

max{the total in-flow, out-flow for the node}



Spanning Tree Based Basis Identification

Figure: An interior-point solution on a network flow.



Spanning Tree Based Basis Identification

Figure: Basic solution for a network LP problem is a tree solution.



Experiment: Optimal Transport (MNIST dataset)

Figure: Transport plan of a randomly generated optimal transport problem from MNIST dataset.
The left, the middle, and the right are the initial interior point solution, the tree solution from
Tree-based basis identification, and the final-solved optimal solution respectively.



Experiment: Optimal Transport (MNIST dataset)

Table: Crossover procedure comparison with high precision interior-point solution.

scale gurBarr gurCross CNET TNET

1 1 0.41 s 0.71 s 0.28 s 0.32 s
2 1 1.79 s 0.64 s 0.60 s 0.28 s
3 1 0.90 s 0.27 s 0.20 s 0.21 s

4 2 1.81 s 0.25 s 0.64 s 0.71 s
5 2 3.05 s 0.60 s 0.86 s 0.82 s
6 2 1.67 s 0.34 s 1.05 s 0.96 s

7 3 17.76 s 1.74 s 2.44 s 1.85 s
8 3 11.09 s 0.50 s 3.45 s 2.02 s
9 3 7.10 s 0.48 s 1.53 s 1.58 s

10 4 7.40 s 0.12 s 1.58 s 1.22 s
11 4 24.86 s 32.06 s 8.95 s 3.21 s
12 4 29.86 s 9.09 s 4.05 s 3.46 s

13 5 233.28 s 215.84 s 43.82 s 17.65 s
14 5 43.02 s 105.77 s 48.68 s 8.76 s
15 5 184.96 s 246.66 s 24.38 s 15.85 s



Experiment: Optimal Transport (MNIST dataset)

Table: Crossover procedure comparison with low precision interior-point solution.

scale gurBarr gurCross CNET TNET

1 1 0.88 s 0.33 s 1.25 s 1.26 s
2 1 0.39 s 0.26 s 0.17 s 0.18 s
3 1 0.45 s 0.20 s 0.20 s 0.19 s

4 2 1.17 s 0.24 s 0.49 s 0.54 s
5 2 0.93 s 0.31 s 0.50 s 0.55 s
6 2 1.22 s 0.57 s 0.86 s 0.56 s

7 3 14.98 s 6.16 s 6.54 s 5.04 s
8 3 6.76 s 4.06 s 1.11 s 1.25 s
9 3 6.23 s 5.80 s 1.42 s 1.25 s

10 4 40.28 s 51.75 s 4.68 s 6.47 s
11 4 15.58 s 19.07 s 5.61 s 5.37 s
12 4 18.51 s 67.67 s 10.25 s 4.92 s

13 5 114.45 s 231.84 s 16.01 s 14.16 s
14 5 110.92 s 282.51 s 8.58 s 11.97 s
15 5 50.52 s 142.90 s 12.68 s 8.01 s



Experiment: Optimal Transport (MNIST dataset)

Table: Total run-time comparison among Simplex, Barrier, network Simplex, and Sinkhorn plus
our crossover methods.

scale gurSimplex gurBarrier cplNetSplx Skh+CNET Skh+TNET

1 1 0.19 s 1.10 s 0.05 s 0.17 s 0.26 s
2 1 0.35 s 1.17 s 0.05 s 0.06 s 0.07 s
3 1 0.33 s 1.28 s 0.06 s 0.05 s 0.07 s

4 2 4.20 s 2.28 s 0.23 s 0.21 s 0.36 s
5 2 9.29 s 3.12 s 0.36 s 0.25 s 0.44 s
6 2 0.54 s 1.29 s 0.09 s 0.08 s 0.13 s

7 3 32.04 s 6.17 s 0.67 s 0.44 s 0.81 s
8 3 141.20 s 9.10 s 1.13 s 0.64 s 1.03 s
9 3 247.53 s 16.28 s 1.98 s 1.32 s 2.46 s

10 4 98.81 s 11.25 s 1.56 s 1.23 s 2.02 s
11 4 997.06 s 51.23 s 5.05 s 2.39 s 4.43 s
12 4 t1 123.42 s 4.89 s 3.19 s 5.33 s

13 5 t 280.12 s 10.50 s 7.73 s 15.14 s
14 5 t 177.75 s 6.53 s 5.26 s 11.74 s
15 5 t 245.74 s 14.16 s 5.21 s 8.58 s

16 6 t 862.93 s 48.20 s 11.03 s 30.59 s
17 6 t 823.22 s 56.16 s 21.87 s 37.57 s
18 6 t 536.69 s 42.94 s 12.20 s 27.46 s

1 Time limit exceeded (over 1000 seconds);



Experiment: Minimum Cost Flow
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Figure: Computation time of crossover on the large network-LP benchmark problems.



Experiment: Minimum Cost Flow
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Figure: Computation time and iteration number of crossover on GOTO 8 and GOTO sr.



Perturbation Crossover: a High Viewpoint

Figure: For a certain type of problems, there are infinite optimal solution gathered on an ”optimal
face”. In this case, a perturbation on c will let the optimal face degenerate to a single point.
This will largely reduce the difficulty of crossover.



Experiment: Perturbation Crossover on LP Benchmark

Table: Test perturbation crossover on Mosek on the barrier LP benchmark problems with long
crossover time.

problem mskBarr Original Perturbed

1 datt256 3.61 s 349.36 s 10.08 s
2 ns1688926 3.53 s 87.55 s 90.86 s
3 stat96v1 9.20 s 104.72 s 65.99 s
4 graph40-40 18.20 s 158.17 s 37.11 s
5 savsched1 17.19 s 113.30 s 48.73 s
6 self 1.02 s 5.80 s 1.44 s



Experiment: Perturbation Crossover on LP Benchmark

Table: Test perturbation crossover on Cplex on the barrier LP benchmark problems with long
crossover time.

problem cplBarr Original Perturbed

1 graph40-40 0.69 s 92.89 s 45.44 s
2 datt256 3.49 s 284.44 s 23.70 s
3 nug08-3rd 1.25 s 88.75 s 64.77 s
4 cont11 7.24 s 221.69 s 279.61 s
5 cont1 2.50 s 70.41 s 64.23 s
6 shs1023 15.42 s 365.36 s 298.28 s
7 savsched1 7.64 s 108.45 s 25.03 s
8 chrom1024-7 0.20 s 2.63 s 2.50 s
9 neos3 1.45 s 15.48 s 73.80 s

10 fhnw-bin0 1.53 s 12.84 s 20.75 s
11 self 0.99 s 5.87 s 3.38 s
12 qap15 0.39 s 2.06 s 3.03 s



Thank you!
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